技術の適用範囲

下水処理施設の標準式反応タンク（全面式やロール式）および深槽式反応タンクの
触気装置として、新設、増設、改築、更新などに適用する。

施工実績（指針）

<table>
<thead>
<tr>
<th>都道府県</th>
<th>納入施設</th>
<th>曬気方式</th>
<th>煉付状況</th>
<th>納入年月</th>
</tr>
</thead>
<tbody>
<tr>
<td>島根</td>
<td>K処理場</td>
<td>輪廻式</td>
<td>固定式</td>
<td>2003年5月</td>
</tr>
<tr>
<td>和歌山</td>
<td>H終処理場</td>
<td>輪廻式</td>
<td>固定式</td>
<td>2004年10月</td>
</tr>
<tr>
<td>北海道</td>
<td>F浄化センター</td>
<td>輪廻式</td>
<td>吊上式</td>
<td>2005年3月</td>
</tr>
<tr>
<td>京都</td>
<td>M浄化センター</td>
<td>輪廻式（深槽式）</td>
<td>固定式</td>
<td>2006年3月</td>
</tr>
<tr>
<td>東京</td>
<td>S水再生センター</td>
<td>輪廻式</td>
<td>固定式</td>
<td>2009年3月</td>
</tr>
<tr>
<td>島根</td>
<td>T浄化センター</td>
<td>輪廻式</td>
<td>固定式</td>
<td>2009年7月</td>
</tr>
<tr>
<td>愛媛</td>
<td>N下処理場</td>
<td>輪廻式</td>
<td>固定式</td>
<td>2010年1月</td>
</tr>
<tr>
<td>宮城</td>
<td>H浄化センター</td>
<td>輪廻式</td>
<td>固定式</td>
<td>2010年2月</td>
</tr>
<tr>
<td>愛知</td>
<td>T浄化センター</td>
<td>輪廻式</td>
<td>固定式</td>
<td>2010年3月</td>
</tr>
<tr>
<td>福岡</td>
<td>K浄化センター</td>
<td>輪廻式</td>
<td>固定式</td>
<td>2010年4月</td>
</tr>
<tr>
<td>静岡</td>
<td>J浄化センター</td>
<td>全面炭酸式</td>
<td>固定式</td>
<td>2010年9月</td>
</tr>
<tr>
<td>北海道</td>
<td>H浄化センター</td>
<td>全面炭酸式</td>
<td>固定式</td>
<td>2010年12月</td>
</tr>
<tr>
<td>福井</td>
<td>I浄化センター</td>
<td>輪廻式</td>
<td>固定式</td>
<td>2010年12月</td>
</tr>
<tr>
<td>川崎</td>
<td>M浄化センター</td>
<td>全面炭酸式</td>
<td>固定式</td>
<td>2011年1月</td>
</tr>
<tr>
<td>北海道</td>
<td>K終処理場</td>
<td>輪廻式</td>
<td>簡易吊上式</td>
<td>2011年2月</td>
</tr>
<tr>
<td>広島</td>
<td>F処理場</td>
<td>輪廻式</td>
<td>固定式</td>
<td>2011年2月</td>
</tr>
<tr>
<td>青森</td>
<td>G浄化センター</td>
<td>全面炭酸式</td>
<td>固定式</td>
<td>2011年4月</td>
</tr>
<tr>
<td>山口</td>
<td>O浄化センター</td>
<td>輪廻式</td>
<td>簡易吊上式</td>
<td>2011年12月</td>
</tr>
</tbody>
</table>

他88ヶ所（2017年3月現在）

技術保有会社および連絡先

【技術保有会社】　住友重機械エンバロメント株式会社
水 ing株式会社
株式会社神鋼環境ソリューション

【問合せ先】　住友重機械エンバロメント（株）上下水プラント統括部　TEL 03-6737-2728

審査証明有効年日

2017年3月7日～2022年3月31日

インターネットによる情報公開

・公益財団法人 日本下水道新技術機構
・建設技術審査証明協議会
http://www.jiwt.or.jp/
http://www.jacic.or.jp/sinsa/
技術の概要

メンブレンバイブ式超微細気泡散気装置は、ポリプロピレン製の円筒状本体、特殊シリコンゴム製のメンブレン（散気膜）、本体固定金具、およびメンブレンを固定するバンドが一体になった円筒状の散気装置で、空気ヘッダー管に直接取付くことができるシンプルな構造である。メンブレンの円筒側面の散気部にはスリットが規則正しく設けられ、空気供給によってメンブレンが膨張するとともにスリットが開いて超微細気泡が発生する。メンブレンは、標準型と、さらに微細な気泡を発生する高効率型、初期圧力損失が低い低圧損型の3種類のメンブレンがある。今回、低圧損型の適用範囲を拡大し、深層式を追加した。

本技術は、高い酸素移動効率が得られるだけでなく、耐久性の高いメンブレンの採用により、材質劣化や目詰まりによる圧力損失が少なく、長期の安定運転が可能な超微細気泡散気装置である。

さらに、メンブレンの交換が可能なライフサイクルコストの低減に有効、池内有面積が小さく高い散気密度への適用性が高い。既設散気装置の更新時に最小限の改造で可能であるなどの特長を有する。

従来の超微細気泡散気装置の持つ有しつつ、維持管理性の向上および耐圧設計ニーズへの対応を可能とした。

技術の特長を以下に示す。

（1）標準アプレーション式における酸素移動効率

全面アプレーション式において、散気水深 5.0 m、占有面積比 8 %、基準条件における平均酸素移動効率が以下である。

1）低圧損型

通気量：1.5〜12 m³/m²h、平均酸素移動効率：27〜42 %

2）標準型

通気量：2.1〜6.4 m³/m²h、平均酸素移動効率：31〜33 %

3）高圧損型

通気量：2.1〜6.4 m³/m²h、平均酸素移動効率：33〜43 %

（2）従来方式（標準式）における酸素移動効率

従来方式（標準式）において、散気水深 5.0 m、占有面積比 4 %、基準条件における平均酸素移動効率が以下である。

1）低圧損型

通気量：1.5〜12 m³/m²h、平均酸素移動効率：25〜36 %

2）標準型

通気量：2.1〜6.4 m³/m²h、平均酸素移動効率：22〜31 %

3）高圧損型

通気量：2.1〜6.4 m³/m²h、平均酸素移動効率：27〜37 %

（3）従来方式（深層方式）における酸素移動効率

従来方式（深層方式）において、散気水深 5.0 m、占有面積比 10 %、基準条件における平均酸素移動効率が以下である。

1）低圧損型

通気量：1.5〜12 m³/m²h、平均酸素移動効率：23〜34 %

2）標準型

通気量：2.1〜6.4 m³/m²h、平均酸素移動効率：25〜34 %

3）高圧損型

通気量：2.1〜6.4 m³/m²h、平均酸素移動効率：26〜39 %

（4）自動まり

汚水中で目詰まりなく運転でき、低圧損型の圧力損失は運転圧力において6 kPa 以下である。

（5）維持能力

反応タンク内の混合液を十分摂拌できる。

（6）取付け、交換、吊上げ点検

散気装置の構造がシンプルで、取扱いが容易（取付け作業が簡単、メンブレンのみの交換が可能、吊上げ機構の利用により供用下でも保守・点検が可能）である。

（7）占有面積比

散気装置の必要占有面積がメンブレンパネル式に比べて小さい。

（8）設置水深

セラミック散気器／散気板を本技術（低圧損型）へ更新する場合、プロフを変更せず、同じ水深に設置して運転できる。

（9）更新範囲

セラミック散気器／散気板を本技術へ更新する場合、更新範囲が小さい。

※清水、20 ℃、溶存酸素濃度 0 mg/L
技術の概要

メンブレンバイト式超微細気泡散気装置は、ポリプロピレン製の円筒状本体、特殊シリコンゴム製のメンブレン（散気膜）、本体固定金具、およびメンブレンを固定するバンドが一体になった円筒形状の散気装置で、空気ヘッダー管に直接取付けることができるシンプルな構造である。メンブレンの円筒側面の散気部にはスリットが規則正しく設けられ、空気供給によってメンブレンが膨張するとともにスリットが開いて超微細気泡が発生する。

メンブレンには、標準型と、さらに微細な気泡を発生する高効率型、初期圧力損失が低い低圧損型の3種類のメンブレンがある。今回、低圧損型の適用範囲を拡大し、深層水を処理した。

本技術は、高い酸素移動効率が得られるだけでなく、耐久性の高いメンブレン採用により、材質劣化や目詰まりによる圧力損失が少なく、長期の安定運転が可能な超微細気泡散気装置である。

さらに、メンブレンのみの交換が可能でライフサイクルコストの低減に有効。池内有面積が小さく高い酸素密度への適用性が高い。既設散気装置の更新時に最小限の改造で可能であるなどの特長を有する。

従来の超微細気泡散気装置の特長を有しつつ、維持管理上の向上および座席設計ニーズへの対応を可能とした。

技術の特長を以下に示す。

（1）全面ツキレーション式における酸素移動効率

全面ツキレーション式において、散気水深5.0 m、散気面積比8%、基準条件における平均酸素移動効率が以下の通りである。

1）低圧損型 通気量：1.5～12 S/m²/h、平均酸素移動効率：27～42 %
2）標準型 通気量：2.1～6.4 S/m²/h、平均酸素移動効率：31～33 %
3）高効率型 通気量：2.1～6.4 S/m²/h、平均酸素移動効率：33～43 %

（2）蒸留式（標準式）における酸素移動効率

蒸留式（標準式）において、散気水深5.0 m、散気面積比4%、基準条件における平均酸素移動効率が以下の通りである。

1）低圧損型 通気量：1.5～12 S/m²/h、平均酸素移動効率：25～36 %
2）標準型 通気量：2.1～6.4 S/m²/h、平均酸素移動効率：22～31 %
3）高効率型 通気量：2.1～6.4 S/m²/h、平均酸素移動効率：27～37 %

（3）蒸留式（深層式）における酸素移動効率

蒸留式（深層式）において、散気水深5.0 m、散気面積比10%、基準条件における平均酸素移動効率が以下の通りである。

1）低圧損型 通気量：1.5～12 S/m²/h、平均酸素移動効率：23～34 %
2）標準型 通気量：2.1～6.4 S/m²/h、平均酸素移動効率：25～34 %
3）高効率型 通気量：2.1～6.4 S/m²/h、平均酸素移動効率：26～39 %

（4）用途

污水中の目的物を分離後、低圧損型の圧力損失は連続運転において6 kPa以下である。

（5）規格能力

反応タンク内の混合液を十分摂取できる。

（6）取付、交換、吊上げ点検

散気装置の構造がシンプルで、取扱いが容易（取付け作業が簡単、メンブレンのみの交換が可能。吊上げ機能の利用により施用下で保守・点検が可能）である。

（7）運転条件

散気装置の必要有面積がメンブレンパラメータに比べて小さい。

（8）設計水深

セリラクス散気箱/散気板を本技術（低圧損型）へ更新する場合、ブロスを変更せず、同じ水深に設置して運転できる。

（9）更新範囲

セリラクス散気箱/散気板を本技術へ更新する場合、更新範囲が小さい。

※ 清水、20℃、溶存酸素濃度0 mg/L

表-1 散気装置の仕様

<table>
<thead>
<tr>
<th>型式</th>
<th>外径 (mm)</th>
<th>全長 (m)</th>
<th>散気面積 (m²)</th>
<th>発泡面積 (m²)</th>
<th>重量 (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-1000 L</td>
<td>66</td>
<td>1.200</td>
<td>1.0</td>
<td>0.15</td>
<td>1.70</td>
</tr>
<tr>
<td>D-1500 L</td>
<td>66</td>
<td>1.700</td>
<td>1.5</td>
<td>0.23</td>
<td>2.25</td>
</tr>
<tr>
<td>D-2000 L</td>
<td>66</td>
<td>2.200</td>
<td>2.0</td>
<td>0.30</td>
<td>2.75</td>
</tr>
</tbody>
</table>

※1: 散気部の長さを示す。
※2: メンブレン側面の発泡用スリット部分の面積を示す。
技術の適用範囲
下水処理施設の標準式反応タンク（全面エアレーション式および旋回式）および深槽式反応タンクの
曝気装置として、新設、増設、改築、更新などに適用する。

施工実績（指針）

<table>
<thead>
<tr>
<th>都道府県</th>
<th>納入場所</th>
<th>曝気方式</th>
<th>設付状況</th>
<th>納入年月</th>
</tr>
</thead>
<tbody>
<tr>
<td>長崎</td>
<td>K処理場</td>
<td>旋回式</td>
<td>固定式</td>
<td>2003年 5月</td>
</tr>
<tr>
<td>和歌山</td>
<td>H終処理場</td>
<td>旋回式</td>
<td>固定式</td>
<td>2004年 10月</td>
</tr>
<tr>
<td>北海道</td>
<td>F浄化センター</td>
<td>旋回式</td>
<td>吊上式</td>
<td>2005年 3月</td>
</tr>
<tr>
<td>京都</td>
<td>M浄化センター</td>
<td>旋回式（深槽式）</td>
<td>固定式</td>
<td>2006年 3月</td>
</tr>
<tr>
<td>東京</td>
<td>S水再生センター</td>
<td>旋回式</td>
<td>固定式</td>
<td>2009年 3月</td>
</tr>
<tr>
<td>長崎</td>
<td>T浄化センター</td>
<td>旋回式</td>
<td>固定式</td>
<td>2009年 7月</td>
</tr>
<tr>
<td>福岡</td>
<td>N下処理場</td>
<td>旋回式</td>
<td>固定式</td>
<td>2010年 1月</td>
</tr>
<tr>
<td>高知</td>
<td>H浄化センター</td>
<td>旋回式</td>
<td>固定式</td>
<td>2010年 2月</td>
</tr>
<tr>
<td>福岡</td>
<td>K浄化センター</td>
<td>旋回式</td>
<td>固定式</td>
<td>2010年 3月</td>
</tr>
<tr>
<td>静岡</td>
<td>J浄化センター</td>
<td>全面曝気式</td>
<td>固定式</td>
<td>2010年 9月</td>
</tr>
<tr>
<td>北海道</td>
<td>H浄化センター</td>
<td>全面曝気式</td>
<td>固定式</td>
<td>2010年 12月</td>
</tr>
<tr>
<td>福井</td>
<td>I浄化センター</td>
<td>旋回式</td>
<td>固定式</td>
<td>2010年 12月</td>
</tr>
<tr>
<td>高知</td>
<td>M浄化センター</td>
<td>全面曝気式</td>
<td>固定式</td>
<td>2011年 1月</td>
</tr>
<tr>
<td>北海道</td>
<td>K終処理場</td>
<td>旋回式</td>
<td>簡易吊上式</td>
<td>2011年 2月</td>
</tr>
<tr>
<td>佐賀</td>
<td>F処理場</td>
<td>旋回式</td>
<td>固定式</td>
<td>2011年 2月</td>
</tr>
<tr>
<td>青森</td>
<td>G浄化センター</td>
<td>全面曝気式</td>
<td>固定式</td>
<td>2011年 4月</td>
</tr>
<tr>
<td>山口</td>
<td>O浄化センター</td>
<td>旋回式</td>
<td>簡易吊上式</td>
<td>2011年 12月</td>
</tr>
<tr>
<td>他 88ヶ所（2017年3月現在）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

技術保有会社および連絡先

【技術保有会社】 住友重機械エンバイロメント株式会社
水ing株式会社
株式会社神鋼環境ソリューション

【問い合わせ】 住友重機械エンバイロメント（株）上下水プラント統括部 TEL 03-6737-2728

審査証明有効年月日
2017年3月7日〜2022年3月31日

インターネットによる情報公開

・公益財団法人 日本下水道新技術機構
http://www.jiww.or.jp/
http://www.jaic.or.jp/sinrsa/